| Peer-Reviewed

Exciton States Spectroscopy in Quasi - Zero - Dimensional Nanostruсtures: Theory

Published in Optics (Volume 3, Issue 6-1)
Received: 9 July 2014     Accepted: 15 July 2014     Published: 31 July 2014
Views:       Downloads:
Abstract

The theory of exciton states in a quantum dot under conditions of dominating polarization interaction of an electron and a hole with a spherical (quantum dot – dielectric matrix) interface is developed. An shown, that the energy spectrum of heavy hole in the valence band quantum dot is equivalent to the spectrum of hole carrying out oscillator vibrations in the adiabatic electron potential. In the framework of the dipole approximation studied interband absorption of light in a quasi - zero - dimensional nanosystems. We show that the absorption and emission edge of quantum dots is formed by two transitions of comparable intensity from different hole size – quantization levels and into a lower electron size – quantization level. Propose a theoretical prospect of using hole transitions between equidistant series of quantum levels observed in nanocrystals for desining a nanolaser.

Published in Optics (Volume 3, Issue 6-1)

This article belongs to the Special Issue Optics and Spectroscopy of the Charge Carriers and Excitons States in Quasi - Zero - Dimensional Nanostructures

DOI 10.11648/j.optics.s.2014030601.12
Page(s) 2-9
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2014. Published by Science Publishing Group

Keywords

Excitons, Energy Spectrum, Exciton Binding Energy, Absorption of Light, Nanolaser

References
[1] Alferov, J.I., (2002). Progress development in semiconductor nanostructures. Physics Uspekhi. 172, 1068 - 1074.
[2] Ekimov, A.I., Onushchenko, A.A., Efros, Al.L., (1986). Zize quantization of excitons in nanocrystals. Sov. Phys. JETP Lett. 43, 292-294.
[3] Efros, A.L., Efros, Al.L., Interband absorption light in semiconductor sphere. (1982). Sov. Phys. Semiconductors. 16, 955- 962.
[4] Kulchin, Y.N., Scherbakov, A.V., Dzyuba, V.P., Voznesenskiy, S.S., (2008). Nonlinear optical properties of heterogeneous nanocomposites. Quantum Electronics. 38, 154 -158.
[5] Dzyuba,V.P., Kulchin, Y.N., Krasnok, A.E., (2010). Nonlinear refractive index of heterogeneous nanocomposites in weak optical fields. Technical Physics Letters. 36, 1-9.
[6] Bondar, V.N., Brodin, M.S., (2010). Optical properties semiconbductor quantum dots. Semiconductors. 44, 884-890.
[7] Pokutnyi, S.I., Theory of excitons in quasi – zero – dimensional semiconductors systems; Academperiodika: Kiev, Ukraine, 2003; pp. 24-35, 82-94.
[8] Pokutnyi, S.I., Spectroscopy of electron and exciton states in low – dimensional systems; Academperiodika: Kiev, Ukraine, 2005; pp. 44-55, 142-152.
[9] Pokutnyi, S.I., Optics of nanosystems; Academperiodika: Kiev, Ukraine, 2007; pp. 54-64.
[10] Pokutnyi, S.I., Shpak, A.P., (2005). Influence of polarizing interfction on spectroscopy of excitons in quasi – zero – dimensional semiconductors systems. Progr. Phys. Metal. 6, 105-134.
[11] Pokutnyi, S.I., (2005). Optical of spectroscopy of exciton states in quasi – zero – dimensional semiconductors nanosystems (review). Ukr. J. Phys. Rev. 3, 46- 74.
[12] Pokutnyi, S.I., Shpak, A.P., Uvarov, V.N., (2007). Bulk local states in quasi – zero – dimensional nanosystems. Progr. Phys. Metal. 8, 1-20.
[13] Pokutnyi, S.I., (2005). Optical nanolaser heavy hole transitions in in quasi – zero – dimensional semiconductors nanosystems. Phys. Lett. A. 342, 347-352.
[14] Pokutnyi, S.I., (2006). Absorption of light in quantum dots. Semiconductors. 40, 217-224.
[15] Pokutnyi, S.I., (2011). Interband absorption of light in semiconductor quantum dots. J. Nanoscience Lett. 1, 191-198.
[16] Pokutnyi, S.I., Gorbyk, P.P., (2013). Absorption of light in positron and electron states in quasi – zero – dimensional nanosystems. Optics, 2, 47-50.
[17] Pokutnyi, S.I., (2004). Size quantization Stark effect in semiconductor quantum dots. J. Appl. Phys. 96, 1115-1122.
[18] Pokutnyi, S.I., (1997). Absorption of light in in quasi – zero – dimensional nanosystems. Phys. Solid State. 39, 604- 612.
[19] Efremov, N.A., Pokutny, S.I., (1990). Energy spectrum of exciton in spherical particle. Sov. Phys. Solid. State. 32, 955- 964.
[20] Pokutnyi, S.I., (1992). Size quantization of electron-hole pair in semiconductor quantum dots. Phys. Lett. A. 168, 433-438.
[21] Efremov, N.A., Pokutny, S.I., (1985). Macroscopic local charge states in ultradispersion media. Sov. Phys. Solid. State. 27, 27- 35.
[22] Pokutnyi, S.I., (1995). Size quantization of exciton in semiconductor quantum dots. Phys. Lett. A. 203, 384-401.
[23] Pokutnyi, S.I., (2013). On an exciton with a spatially separated electron and hole in quasi – zero – dimensional semiconductor nanosystems. Semiconductors. 47, 791-798.
[24] Pokutnyi, S.I., (2013). Binding energy of the exciton of a spatially separated electron and hole in quasi – zero – dimensional semiconductor nanosystems .Technical Physics Letters. 39, 233-235.
[25] Pokutnyi, S.I., (2013). Biexcitons formed from spatially separated electrons and holes in quasi – zero – dimensional semiconductor nanosystems. Semiconductors. 47, 1626-1635.
[26] Pokutny, S.I., Shpak, A.P., Uvarov, V.N., Pokutnyi, M.S., (2008). Theory of exciton states in quasi – zero – dimensional nanosystems. Metal Phys. Advanc. Technol. 30, 459-478.
[27] Pokutnyi, S.I., (2005). Exciton states in quasi – zero – dimensional semiconductor nanosystems. Semiconductors. 39, 1066-1074.
[28] Pokutnyi, S.I., (2007). Exciton states in semiconductor quantum dots in the framework of the modified effective mass method. Semiconductors. 41, 1323-1331.
[29] Pokutnyi, S.I., (2012). Exciton states in semiconductor quantum dots. Semiconductors. 46, 174-184.
[30] Grabovskis, V., Dzenis, Y., Ekimov, A., (1989). Nonlinear optics of semiconductor – doped glasses . Sov. Phys. Solid State, 31, 272- 275.
[31] Bogdankevich, O., Darznek, S., Eliseev, P., Popuprovodnikovye lazery; Nauka: Moskva, Russia, 1976; pp. 94-98.
[32] Flugge, S., Practical Quantum Machanics I, Springer – Verlag: Berlin, Germany, 1971; pp. 111-114.
Cite This Article
  • APA Style

    Sergey I. Pokutnyi. (2014). Exciton States Spectroscopy in Quasi - Zero - Dimensional Nanostruсtures: Theory. Optics, 3(6-1), 2-9. https://doi.org/10.11648/j.optics.s.2014030601.12

    Copy | Download

    ACS Style

    Sergey I. Pokutnyi. Exciton States Spectroscopy in Quasi - Zero - Dimensional Nanostruсtures: Theory. Optics. 2014, 3(6-1), 2-9. doi: 10.11648/j.optics.s.2014030601.12

    Copy | Download

    AMA Style

    Sergey I. Pokutnyi. Exciton States Spectroscopy in Quasi - Zero - Dimensional Nanostruсtures: Theory. Optics. 2014;3(6-1):2-9. doi: 10.11648/j.optics.s.2014030601.12

    Copy | Download

  • @article{10.11648/j.optics.s.2014030601.12,
      author = {Sergey I. Pokutnyi},
      title = {Exciton States Spectroscopy in Quasi - Zero - Dimensional Nanostruсtures: Theory},
      journal = {Optics},
      volume = {3},
      number = {6-1},
      pages = {2-9},
      doi = {10.11648/j.optics.s.2014030601.12},
      url = {https://doi.org/10.11648/j.optics.s.2014030601.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.optics.s.2014030601.12},
      abstract = {The theory of exciton states in a quantum dot under conditions of dominating polarization interaction of an electron and a hole with a spherical (quantum dot – dielectric matrix) interface is developed. An shown, that the energy spectrum of heavy hole in the valence band quantum dot is equivalent to the spectrum of hole carrying out oscillator vibrations in the adiabatic electron potential. In the framework of the dipole approximation studied interband absorption of light in a quasi - zero - dimensional nanosystems. We show that the absorption and emission edge of quantum dots is formed by two transitions of comparable intensity from different hole size – quantization levels and into a lower electron size – quantization level. Propose a theoretical prospect of using hole transitions between equidistant series of quantum levels observed in nanocrystals for desining a nanolaser.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Exciton States Spectroscopy in Quasi - Zero - Dimensional Nanostruсtures: Theory
    AU  - Sergey I. Pokutnyi
    Y1  - 2014/07/31
    PY  - 2014
    N1  - https://doi.org/10.11648/j.optics.s.2014030601.12
    DO  - 10.11648/j.optics.s.2014030601.12
    T2  - Optics
    JF  - Optics
    JO  - Optics
    SP  - 2
    EP  - 9
    PB  - Science Publishing Group
    SN  - 2328-7810
    UR  - https://doi.org/10.11648/j.optics.s.2014030601.12
    AB  - The theory of exciton states in a quantum dot under conditions of dominating polarization interaction of an electron and a hole with a spherical (quantum dot – dielectric matrix) interface is developed. An shown, that the energy spectrum of heavy hole in the valence band quantum dot is equivalent to the spectrum of hole carrying out oscillator vibrations in the adiabatic electron potential. In the framework of the dipole approximation studied interband absorption of light in a quasi - zero - dimensional nanosystems. We show that the absorption and emission edge of quantum dots is formed by two transitions of comparable intensity from different hole size – quantization levels and into a lower electron size – quantization level. Propose a theoretical prospect of using hole transitions between equidistant series of quantum levels observed in nanocrystals for desining a nanolaser.
    VL  - 3
    IS  - 6-1
    ER  - 

    Copy | Download

Author Information
  • Chu?ko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., UA - 03164 Kyiv, Ukraine

  • Sections