| Peer-Reviewed

A Deep Outlook for the Chalcopyrite Solar Cells: For Future Perspectives

Received: 29 June 2019     Accepted: 24 September 2019     Published: 24 October 2019
Views:       Downloads:
Abstract

This publication investigates to present all new scientific and industrial works all rolled into one with more effective and predictability aspect in chalcopyrite Photovoltaics (PVs). The paper suggests that comprehensive and fine-tuned directions supporting a large portfolio of solar energy materials could be extended to most efficiency, which mostly depend on the growth techniques especially usage rates in substituents and their characteristic/specific properties. There is an indispensable source of solar energy. If this were the case, new energy materials could well become a competitive alternative in many applications within the next few years. This publication builds upon past analyses of chalcopyrites contained in the word Energy outlook as efficient alternative materials. It aims at offering an updated picture of current technology trends/demands/markets, as well as new analyses on how solar energy technologies/materials for capturing the purposed efficiency and durableness can be used in the various energy consuming/developing sectors, now and in the future. In this work we have tried to summarize the all significant studies about Chalcopyrite solar cells from the past to the present and also tried to introduce Te doped CuInGaSeTe compound which is a new member of the family that we produced.

Published in International Journal of Energy and Power Engineering (Volume 8, Issue 4)

This article belongs to the Special Issue Renewable Energy Resources and Power Generation

DOI 10.11648/j.ijepe.20190804.14
Page(s) 52-65
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2019. Published by Science Publishing Group

Keywords

Cu(In)(Ga)(Se)(S), Chalcopyrite Compounds, I-III-VI Semiconductors, Photovoltaics (PVs)

References
[1] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovoltaics 19 (7) (2011) 894–897.
[2] Raid A. Ismail, Omar A. Abdulrazaq, Sol. Energy Mater. Sol. Cells 91 (10) (2007) 903-907.
[3] First Solar, media release from Aug. 5, 2014 http://investor.firstsolar.com/releasedetail.cfm?ReleaseID=864426, 2014.
[4] Cephas E. Small, Song Chen, Jegadesan Subbiah, Chad M. Amb, Sai-Wing Tsang, Tzung-Han Lai, John R. Reynolds, Franky So Nature Photonics 6, (2012) 115–120.
[5] G. A. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, E. H. Sargent ACS Nano 4 (6) (2010) 3374–3380.
[6] J. A. Aguiar, S. Wozny, T. G. Holesinger, T. Aoki, M. K. Patel, M. Yang, J. J. Berry, M. Al-Jassim, W. Zhou, K. Zhu Energy Environ. Sci. 9 (2016) 2372-2382.
[7] S. Albrecht, M. Saliba, J. P. Correa Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. K. Nazeeruddin, A. Hagfeldt, M. Grätzel, B. Rech Energy Environ. Sci. 9 (2016) 81-88.
[8] J-H. Yoon, J-K Park, W. M. Kim, J. W. Lee, H. Pak, J, -hyun Jeon Scientific Reports 7690 (2015) 1-9.
[9] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Prog. Photovolt.: Res. Appl. 22 (2014) 1–9.
[10] L. Fraas, L. Partain Solar Cells and Their Applications (2010) 2nd Ed. John Wiley & Sons, Inc. New Jersey, US.
[11] International Energy Agency Report: New IEA study assesses solar technologies and shows how an integrated approach will increase efficiency, foster deployment and reduce costs-11.1.2011.
[12] S. H. Moon, S. J. Park, S. H. Kim, M. W. Lee, J. Han, J. Y. Kim, H. Kim, Y. J. Hwang, D.-K. Lee, B. K. Min Scientific Reports 5 (2015) 8970.
[13] L. Yin, K. Zhang, H. Luo, G. Cheng, X. Ma, Z. Xiong, X. Xiao Nanoscale 6 (2014) 10879-10886.
[14] C. D. Bailie, M. G. Christoforo, Jo. P. Mailoa, A. R. Bowring, E. L. Unger, W. H. Nguyen, J. Burschka, N. Pellet, J. Z. Lee, M. Gratzel, R. Noufi, T. Buonassisi, A. Salleo, M. D. McGehee, Energy Environ Sci. 8 (2015) 956-963.
[15] T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, A. N. Tiwari Prog. Photovolt. Res. Appl. 3 Oct, 2016.
[16] Y-K. Liao, M. Brossard, D.-H. Hsieh, T.-N. Lin, M. D. B. Charlton, S.-J. Cheng, C.-H. Chen, J-L. Shen, L.-T. Cheng, T. P. Hsieh, F.-I Lai, S.-Y Kuo, H-C. Kuo, P. G. Savvidis, P. G. Lagoudakis Adv. Energy Mater (2014) 1401280.
[17] S. Wagner, J. L. Shay, P. Migliorato, Appl. Phys. Lett. 25 (8) (1974) 434-435.
[18] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovolt. Res. Appl. 2011.
[19] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, Prog. Photovolt. Res. Appl. 16 (2008) 235–239.
[20] R. N. Bhattacharya, W. Batchelor, J. F. Hiltner, J. R. Sites, Appl. Phys. Lett. 75 (1999) 1431.
[21] V. K. Kapur, G. P Ceasar, R. D. McConnell, A. Rohatgi, D. Carlson Photovoltaics for the 21st Century: Proceedings of the International Symposium (1999), ‎The Electrochemical Society Inc. Pennington NJ-USA.
[22] R. N. Bhattacharya, J. F. Hiltner, W. Batchelor, M. A. Contreras, R. N. Noufi, J. R. Sites Thin Solid Films 361-362 (2000) 396-399.
[23] D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, O. Kerrec, Sol. Energy, 77 (2004) 725.
[24] A. Duchatelet, T. Sidali, N. Loones, G. Savidand, E. Chassaing, D. Lincot, Sol. Energy Mater. Sol. Cells 119 (2013) 241.
[25] S. Aksu, S. Pethe, A. Kleiman-Shwarsctein, S. Kundu, M. Pinarbasi, in Proceedings of 38th IEEE Photovoltaic Specialists Conference (PVSC), IEEE (2012) 003092–97.
[26] V. Bermudez (Nexcis), presented at 5th Photovoltaics Thin-Film Week, Berlin, Apr. 2013.
[27] C. Broussillou, M. Andrieux, M. Herbst-Ghysel, M. Jeandin, J. S. Jaime-Ferrer, S. Bodnar, E. Morin, Sol. Energy Mater. Sol. Cells 95 (2011) S13.
[28] F. Oliva, C. Broussillou, M. Annibaliano, N. Frederich, P. P. Grand, A. Roussy, P. Collot, S. Bodnar, Thin Solid Films 535 (2013) 127.
[29] A. Chirila, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A. N. Tiwari, Nat. Mater. 12 (2013) 1107.
[30] Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl, C. M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, A. N. Tiwari Adv. Funct. Mater. 25 (2015) 12–27.
[31] J. A. Frantz, R. Y. Bekele, V. Q. Nguyen, J. S. Sanghera, A. Bruce, S. V. Frolov, M. Cyrus, and I. D. Aggarwal, Thin Solid Films 519 (2011) 7763.
[32] C. H. Chen, W. C. Shih, C.-Y. Chien, C.-H. Hsu, Y.-H. Wu, C. H. Lai, Sol. Energy Mater. Sol. Cells 103 (2012) 25.
[33] J. H. Shi, Z. Q. Li, and S. M. Huang, Prog. Photovolt: Res. Appl. 19 (2011) 160.
[34] X. L. Zhu, Y.M. Wang, Z. Zhou, A.M. Li, L. Zhang, F. Q. Huang, Solar Energy Materials & Solar Cells 113 (2013) 140–143.
[35] J. Liu, D. M. Zhuang, and X. L. Li, Prog. Nature Sci. 23 (2013) 133.
[36] S. Fiat Varol, E. Bacaksız, P.Koralli, M. Kompitsas, G. Çankaya, Mat. Lett. 142 (2015) 273–276.
[37] National Solar Technology Roadmap: CIGS PV, National Renewable Energy Laboratory, Sandia National Laboratories, U.S. Depart. of Energy 2007.
[38] A. Rockett, R.N. Bhattacharya, V. Kapur, S.H. Wei, Basic Research Opportunities in Cu-Chalcopyrite Photovoltaics, Electrochemical Society International Symposium Seattle, Washington May 2-6, 1999.
[39] W. Han, Z. Lin, Angew. Chem. Int. Ed. 51 (2012) 1534.
[40] MiaSole Comm., Efficiency with Commercial-Scale CIGS Thin Film Solar Modules, Dec. 02, 2010.
[41] TSMC solar press release, TSMC solar commercialsize modules (1.09 m2) Set CIGS 15.7% efficiency record, June 18, 2013.
[42] H. Sugimoto, T. Yagioka, M. Nagahashi, Y. Yasaki, Y. Kawaguchi, T. Morimoto, Y. Chiba, T. Aramoto, Y. Tanaka, H. Hakuma, S. Kuriyagawa, K. Kushiya, Achievement of over 17% efficiency with 30x30cm2-sized Cu (In, Ga) (Se, S)2 submodules, 37th IEEE Photovoltaic Specialist Conference, Seattle, June 19–24, 2011.
[43] Hanergy Solar Group Limited press release, Voluntary announcement achievement of thin film efficiency of 18.7% with Solibro’s CIGS thin film technology, Hong Kong, Oct 7. 2013.
[44] EMPA press release, A new world record for solar cell efficiency, 18. Jan. 2013.
[45] M. Powalla, P. Jackson, W. Witte, D. Hariskos, S. Paetel, C. Tschamber, W. Wischmann Sol. Energy Mater. Sol. Cells 119 (2013) 51–58.
[46] MA. Contreras, J. Turtle, A. Gabor, A. Tennant, K. Ramanathan, S. Ashner, A. Franz, J. Keane, L. Wang, J. Scofield, R. Noufi High efficiency Cu (In, Ga) Se2 based solar cells: processing of novel absorber structures. Proceedings of the First WCPEC Hawaii, Dec. 5–9, 1994.
[47] S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, K. Matsubara Prog. Photovolt.: Res. Appl. 18 (2010) 453–466.
[48] M. P. Pedro Salome, V. Fjallstrom, P. Szaniawski, J. P. Leitao, A. Hultqvist, P. A. Fernandes, J. P. Teixeira, B. P. Falcao, U. Zimmermann, A. F. da Cunha, M. Edoff Prog. Photovolt: Res. Appl. 23 (2015) 470–478.
[49] R. Mainz, E. S. Sanli, H. Stange, D. Azulay, S. Brunken, D. Greiner, S. Hajaj, M. D. Heinemann, C. A. Kaufmann, M. Klaus, Q. M. Ramasse, H. Rodriguez-Alvarez, A. Weber, I. Balberg, O. Millo, P. A. van Aken, D. Abou-Ras En. Environ. Sci 9 (2016) 1818-1827.
[50] Y. Cui, A. Javey, J. Benner BAPVC Annual Project Report 2015.
[51] R. C. Armstrong, C. Wolfram, K. P. de Jong, R. Gross, N. S. Lewis, B. Boardman, A. J. Ragauskas, K. Ehrhardt-Martinez, G. Crabtree and M. Ramana Nat. Energy 1 (2016) 15020.
[52] J. Pohl and K. Albe J. Appl. Phys. 108 (2010) 023509.
[53] NREL Efficiency Chart Rev. Sept. 12, 2014, NREL.
[54] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka J. Am. Chem. Soc. 131 (2009) 6050–6051.
[55] T. J. Coutts, K. A Emery, J. S. Ward Prog. Photovolt: Res. Appl. 10 (2002) 195–203.
[56] X. Wu, J. Zhou, A. Duda, J. C. Keane, T. a. Gessert, Y. Yan and R. Noufi Prog. Photovolt. 14 (2006) 471–483.
[57] P. Liska, K. R. Thampi, M. Gratzel, D. Bremaud, D. Rudmann, H. M. Upadhyaya. N. Tiwari Appl. Phys. Lett. 88 (2006) 203103.
[58] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel Nature, 499 (2013) 316–319.
[59] M. Liu, M. B. Johnston and H. J. Snaith Nature 501 (2013) 395–398.
[60] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li and Y. Yang J. Am. Chem. Soc. 136 (2013) 622–625.
[61] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gr¨atzel, S. Mhaisalkar and T. C. Sum Science 342 (2013) 344–347.
[62] T. Umebayashi, K. Asai, T. Kondo and a. Nakao Phys. Rev. B: Condens. Matter Mater. Phys. 67 (2003) 155405.
[63] C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, Inorg. Chem. 52 (2013) 9019–9038.
[64] W.-J. Yin, T. Shi and Y. Yan, Appl. Phys. Lett. 104 (2014) 063903.
[65] V. Gonzalez-Pedro, E. J. Juarez-Perez, W.-S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero and J. Bisquert Nano Lett. 14 (2014) 888–893.
[66] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. Il Seok Nano Lett. 13 (2013) 1764–1769.
[67] W. Shockley, H. J. Queisser J. Appl. Phys. 32 (1961) 510–519.
[68] A. Devos J. Phys. D: Appl. Phys. 13 (1980) 839–846.
[69] D. Dimova-Malinovska J. Phys: Conf. Ser. 250 (2010) 012007-15.
[70] K. Taehee; J. Jun Hong, H., Seunghee, L. Doh-Kwon, K. Honggon, L. Wonmok, K. Kyungkon Appl. Phys. Lett. 98 (2011) 183503-3.
[71] J. Hoon Seo, D.-H. Kim, S.-H. Kwon, M. Song, M.-S. Choi, S. Y. Ryu, H. W. Lee, Y. C. Park, J.-D. Kwon, K.-S. Nam, Y. Jeong, J.-W. Kang, C. Su Kim Adv. Mater. 24 (2012) 4523–4527.
[72] M. Reinhard, P. Sonntag, R. Eckstein, L. Bürkert, A. Bauer, B. Dimmler, U. Lemmer, A. Colsmann Appl. Phys. Lett. 103 (2013) 143904-4.
[73] S. Ito, I. M. Dharmadasa, G. J. Tolan, J. S. Roberts, G. Hill, H. Miura, J.-H. Yum, P. Pechy, P. Liska, P. Comte, M. Grätzel Sol. Energy 85 (2011) 1220–1225.
[74] I. Bruder, M. Karlsson, F. Eickenmeyer, J. Hwang, P. Erk, A. Hagfeldt, J. Weis, N. Pschirer Sol. Energ. Mat. Sol. C. 93 (2009) 1896–1899.
[75] S. Wenger, S. Seyrling, A. N. Tiwari, M. Gratzel, Appl Phys. Lett. 94 (2009) 173508-3.
[76] S. E. Habas, H. A. S. Platt, M. van Hest, D. S. Ginley, Chem. Rev. 110 (2010) 6571–6594.
[77] T. K. Todorov, O. Gunawan, T. Gokmen, D. B. Mitzi Prog. Photovolt.: Res. Appl. 21 (2013) 82–87.
[78] Q. Guo, G. M. Ford, R. Agrawal, H. W. Hillhouse Prog. Photovolt.: Res. Appl. 21 (2013) 64–71.
[79] National Solar Technology Roadmap: CIGS PV, NREL Jun. 2007.
[80] L. D. Partain Solar Cells and Their Applications, John Wiley & Sons, 1995.
Cite This Article
  • APA Style

    Songul Fiat Varol, Guven Cankaya. (2019). A Deep Outlook for the Chalcopyrite Solar Cells: For Future Perspectives. International Journal of Energy and Power Engineering, 8(4), 52-65. https://doi.org/10.11648/j.ijepe.20190804.14

    Copy | Download

    ACS Style

    Songul Fiat Varol; Guven Cankaya. A Deep Outlook for the Chalcopyrite Solar Cells: For Future Perspectives. Int. J. Energy Power Eng. 2019, 8(4), 52-65. doi: 10.11648/j.ijepe.20190804.14

    Copy | Download

    AMA Style

    Songul Fiat Varol, Guven Cankaya. A Deep Outlook for the Chalcopyrite Solar Cells: For Future Perspectives. Int J Energy Power Eng. 2019;8(4):52-65. doi: 10.11648/j.ijepe.20190804.14

    Copy | Download

  • @article{10.11648/j.ijepe.20190804.14,
      author = {Songul Fiat Varol and Guven Cankaya},
      title = {A Deep Outlook for the Chalcopyrite Solar Cells: For Future Perspectives},
      journal = {International Journal of Energy and Power Engineering},
      volume = {8},
      number = {4},
      pages = {52-65},
      doi = {10.11648/j.ijepe.20190804.14},
      url = {https://doi.org/10.11648/j.ijepe.20190804.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijepe.20190804.14},
      abstract = {This publication investigates to present all new scientific and industrial works all rolled into one with more effective and predictability aspect in chalcopyrite Photovoltaics (PVs). The paper suggests that comprehensive and fine-tuned directions supporting a large portfolio of solar energy materials could be extended to most efficiency, which mostly depend on the growth techniques especially usage rates in substituents and their characteristic/specific properties. There is an indispensable source of solar energy. If this were the case, new energy materials could well become a competitive alternative in many applications within the next few years. This publication builds upon past analyses of chalcopyrites contained in the word Energy outlook as efficient alternative materials. It aims at offering an updated picture of current technology trends/demands/markets, as well as new analyses on how solar energy technologies/materials for capturing the purposed efficiency and durableness can be used in the various energy consuming/developing sectors, now and in the future. In this work we have tried to summarize the all significant studies about Chalcopyrite solar cells from the past to the present and also tried to introduce Te doped CuInGaSeTe compound which is a new member of the family that we produced.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - A Deep Outlook for the Chalcopyrite Solar Cells: For Future Perspectives
    AU  - Songul Fiat Varol
    AU  - Guven Cankaya
    Y1  - 2019/10/24
    PY  - 2019
    N1  - https://doi.org/10.11648/j.ijepe.20190804.14
    DO  - 10.11648/j.ijepe.20190804.14
    T2  - International Journal of Energy and Power Engineering
    JF  - International Journal of Energy and Power Engineering
    JO  - International Journal of Energy and Power Engineering
    SP  - 52
    EP  - 65
    PB  - Science Publishing Group
    SN  - 2326-960X
    UR  - https://doi.org/10.11648/j.ijepe.20190804.14
    AB  - This publication investigates to present all new scientific and industrial works all rolled into one with more effective and predictability aspect in chalcopyrite Photovoltaics (PVs). The paper suggests that comprehensive and fine-tuned directions supporting a large portfolio of solar energy materials could be extended to most efficiency, which mostly depend on the growth techniques especially usage rates in substituents and their characteristic/specific properties. There is an indispensable source of solar energy. If this were the case, new energy materials could well become a competitive alternative in many applications within the next few years. This publication builds upon past analyses of chalcopyrites contained in the word Energy outlook as efficient alternative materials. It aims at offering an updated picture of current technology trends/demands/markets, as well as new analyses on how solar energy technologies/materials for capturing the purposed efficiency and durableness can be used in the various energy consuming/developing sectors, now and in the future. In this work we have tried to summarize the all significant studies about Chalcopyrite solar cells from the past to the present and also tried to introduce Te doped CuInGaSeTe compound which is a new member of the family that we produced.
    VL  - 8
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Energy Systems Engineering, Faculty of Engineering, Giresun University, Giresun, Turkey

  • Materials Engineering, Faculty of Engineering and Natural Sciences, Ankara Y?ld?r?m Beyaz?t University, Ulus/Ankara, Turkey

  • Sections