| Peer-Reviewed

An Analytical Solution for Queue: M/D/1 with Balking

Received: 17 January 2018     Accepted: 31 January 2018     Published: 27 February 2018
Views:       Downloads:
Abstract

In this paper we examine the how to of deriving analytical solution in steady-state for non-truncated single-server queueing and service time are fixed (deterministic) with addition the concept balking, using iterative method and the probability generating function. Some measures of effecting of queuing system are obtained using a smooth and logical manner also some special cases of this system. Finality, some numerical values are given showily the effect of correlation between the (p0, pn, L, Wq) and the additional concepts.

Published in Applied and Computational Mathematics (Volume 7, Issue 2)
DOI 10.11648/j.acm.20180702.11
Page(s) 31-39
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2018. Published by Science Publishing Group

Keywords

Deterministic, Queueing System, Measures of Effectiveness, Generating Function

References
[1] M. R. Oliver, Table of the waiting time distribution for the constant service queue (M/D/1), International journal computers mathematical, 2 (1968), 35–56.
[2] V. B. Iversen, Exact calculation of waiting time distributions in queueing systems with constant holding times, NTS-4, Fourth Nordic teletraffic Seminar, Helsinki (1982).
[3] V. B. Iversen and L. Staalhagen, Waiting time distribution in M/D/1 queueing systems, Electronics Letters, 35 (1999), 2184–2185.
[4] O. Brun and J. Garcia, Analytical solution of finite capacity M/D/1 queues, Journal of applied probability, 4 (2000), 1092-1098.
[5] E. V. Koba, Stability condition for M/D/1 retrial queuing system with a limited waiting time, Cybernetics and systems analysis, 2 (2000), 184-186.
[6] E. V. Koba, An M/D/1 queuing system with partial synchronization of its incoming flow and demands repeating at constant intervals, Cybernetics and systems analysis, 6 (2000), 177-180.
[7] Kenji Nakagawa, On the series expansion for the stationary probabilities of an M/D/1 queue, Journal of the operations research society of Japan, 2 (2005), 111-122.
[8] V. B. Iversen, Teletraffic engineering and network planning, Technical university of Denmark, (2007).
[9] D. Groos and C. M. Harris, Fundamentals of queueing theory, New York, John wiley and sons, 4th edition, (2008).
[10] K. L. Prasad and B. Usha, A comparison between M/M/1 and M/D/1 queuing models to vehicular traffic at Kannyakumari district, Journal of mathematics, 1 (2015), 13-15.
[11] M. I. Hussain, B. Ahmed and R. Ali, A discrete event simulation for the analytical modeling of M/D/1 queues: Output buffer of an ATM multiplexer, Innovative Computing Technology (INTECH), (2016).
[12] B. Kim, J. Kim, Explicit solution for the stationary distribution of a discrete-time finite buffer queue, Journal of Industrial and Management Optimization, 12 (2016), 1121-1133.
[13] J. W. Baek, H. W. Lee, S. Ahn and Y. H. Bae, Exact time-dependent solutions for the M/D/1 queue, Operations Research Letters, 44 (2016), 692–695.
[14] Kotobi and Bilén, Spectrum sharing via hybrid cognitive players evaluated by an M/D/1 queuing model, Journal on wireless communications and networking, 85 (2017), 1-11.
Cite This Article
  • APA Style

    Kotb Abdel Hamid Kotb, Moamer Akhdar. (2018). An Analytical Solution for Queue: M/D/1 with Balking. Applied and Computational Mathematics, 7(2), 31-39. https://doi.org/10.11648/j.acm.20180702.11

    Copy | Download

    ACS Style

    Kotb Abdel Hamid Kotb; Moamer Akhdar. An Analytical Solution for Queue: M/D/1 with Balking. Appl. Comput. Math. 2018, 7(2), 31-39. doi: 10.11648/j.acm.20180702.11

    Copy | Download

    AMA Style

    Kotb Abdel Hamid Kotb, Moamer Akhdar. An Analytical Solution for Queue: M/D/1 with Balking. Appl Comput Math. 2018;7(2):31-39. doi: 10.11648/j.acm.20180702.11

    Copy | Download

  • @article{10.11648/j.acm.20180702.11,
      author = {Kotb Abdel Hamid Kotb and Moamer Akhdar},
      title = {An Analytical Solution for Queue: M/D/1 with Balking},
      journal = {Applied and Computational Mathematics},
      volume = {7},
      number = {2},
      pages = {31-39},
      doi = {10.11648/j.acm.20180702.11},
      url = {https://doi.org/10.11648/j.acm.20180702.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.acm.20180702.11},
      abstract = {In this paper we examine the how to of deriving analytical solution in steady-state for non-truncated single-server queueing and service time are fixed (deterministic) with addition the concept balking, using iterative method and the probability generating function. Some measures of effecting of queuing system are obtained using a smooth and logical manner also some special cases of this system. Finality, some numerical values are given showily the effect of correlation between the (p0, pn, L, Wq) and the additional concepts.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - An Analytical Solution for Queue: M/D/1 with Balking
    AU  - Kotb Abdel Hamid Kotb
    AU  - Moamer Akhdar
    Y1  - 2018/02/27
    PY  - 2018
    N1  - https://doi.org/10.11648/j.acm.20180702.11
    DO  - 10.11648/j.acm.20180702.11
    T2  - Applied and Computational Mathematics
    JF  - Applied and Computational Mathematics
    JO  - Applied and Computational Mathematics
    SP  - 31
    EP  - 39
    PB  - Science Publishing Group
    SN  - 2328-5613
    UR  - https://doi.org/10.11648/j.acm.20180702.11
    AB  - In this paper we examine the how to of deriving analytical solution in steady-state for non-truncated single-server queueing and service time are fixed (deterministic) with addition the concept balking, using iterative method and the probability generating function. Some measures of effecting of queuing system are obtained using a smooth and logical manner also some special cases of this system. Finality, some numerical values are given showily the effect of correlation between the (p0, pn, L, Wq) and the additional concepts.
    VL  - 7
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Mathematics and Statistics, Faculty of Science, Tanta University, Tanta, Egypt

  • Department of Mathematics and Statistics, Faculty of Science, Tanta University, Tanta, Egypt

  • Sections