This paper investigates the electrochemical properties of CuFeO2 prepared by using a malate precursor method as negative electrodes for sodium-ion batteries. In the voltage range of 0.01 to 3.0 V, the oxide calcined at 750C shows a poor cycle property of 27 mAh/g at 10 cycles, although it exhibits the large first discharge capacity of 579 mAh/g. The cycle property is improved to up to 122 mAh/g at 10 cycles by employing a cycle condition with the voltage range of 0.01 to 1.5 V. The results suggest that the sodium-ion insertion/extraction mechanism in CuFeO2 would involve valence changes of Fe ions in the oxide from the Fe3+ state to Fe0 state in the discharge process and from Fe0 to Fe3+ in the charge process.
Published in | American Journal of Physical Chemistry (Volume 4, Issue 2) |
DOI | 10.11648/j.ajpc.20150402.11 |
Page(s) | 16-20 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Sodium-Ion Battery, Negative Electrode, CuFeO2
[1] | M. D. Slater, D. Kim, E. Lee, and C. S. Johnson, “Sodium-Ion Batteries,” Adv. Funct. Mater., 2013, 23, pp. 947-958. |
[2] | S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, and K. Fujiwara, “Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries” Adv. Fanct. Mater., 2011, 21, pp. 3859-3867. |
[3] | X. Xia, M. N. Obrovac, and J. R. Dahn, “Comparison of the Reactivity of NaxC6 and LixC6 with Non-Aqueous Solvents and Electrolytes,” Electrochem Solid State Lett., 2011, 14, pp.A130-133. |
[4] | K. Gotoh, T. Ishikawa. S. Shimadzu, N. Yabuuchi, S. Komaba, K. Takeda, A. Goto, K. Deguchi, S. Ohki, K. Hashi, T. Shimizu, and H. Ishida, “NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery,” J. Power Sources, 2013, 225, pp.137-140. |
[5] | D. A. Stevens, and J. R. Dahn, “High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries,” J. Electrochem. Soc., 2000, 147, pp. 1271-1273. |
[6] | L. D. Ellis, T. D. Hatchard, and M. N. Obrovac, “Reversible Insertion of Sodium in Tin,” J. Electrochem. Soc., 2012, 159, pp. A1801-1805. |
[7] | S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata, and S. Kuze, “Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell,” Electrochem. Commun., 2012, 21, pp.65-68. |
[8] | M. K. Datta, R. Epur, P. Saha, K. Kadakia, S. K. Park, and P. N. Kumta, “Tin and graphite based nanocomposites: Potential anode for sodium ion batteries,” J. Power Sources, 2013, 225, pp.316-322. |
[9] | Y. Yui, Y. Ono, M. Hayashi, Y. Nemoto, K. Hayashi, K. Asakura, and H. Kitabayashi, “Sodium-ion Insertion/Extraction Properties of Sn-Co Anodes and Na pre-doped Sn-Co Anodes,” J. Electrochem. Soc., 2015, 162, A3098-A3102. |
[10] | A. M. Sukeshini, H. Kobayashi, M. Tabuchi, and H. Kageyama, “Physicochemical characterization of CuFeO2 and lithium intercalation,” Solid State Ionics, 2000, 128, pp.33-41. |
[11] | H. Pan, X. Lu, X. Yu, Y.-S. Hu, H. Li, X.-Q. Yang, and L. Chen, “Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room-Temperature Sodium-Ion Batteries,” Adv. Energy Mater., 2013, 9, pp.1186-1194. |
[12] | P. Senguttuvan, G. Rousse, V. Seznec, J.-M. Tarascon, and M. R. Palacin, “Na2Ti3O7: Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries,” Chem. Mater., 2011, 23, pp.4109-4111. |
[13] | P. J. Naeyaert, M. Avdeev, N. Sharma, H. B. Yahia, and C. D. Ling, “Synthetic, Structural, and Electrochemical Study of Monoclinic Na4Ti5O12 as a Sodium-Ion Battery Anode Material,” Chem. Mater., 2014, 26, pp.7067-7072. |
[14] | H. Xiong, M. D. Slater, M. Balasubramanian, C. S. Johnson, and T. Rajh, “Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries,” J. Phys. Chem. Lett., 2012, 2, pp.2560-2565. |
[15] | L. Wu, D. Buchholz, D. Bresser, L. G. Chagas, and S. Passerini, “Anatase TiO2 nanoparticles for high power sodium-ion anodes,” J. Power Sources, 2014, 251, pp.379-385. |
[16] | S. Hariharan, K. Saravanan, and P. Balaya, “-MoO3: A high performance anode material for sodium-ion batteries,” Electrochem. Commun., 2013, 31, pp.5-9. |
[17] | S. Komaba, T. Mikumo, N. Yabuuchi, A. Ogata, H. Yoshida, and Y. Yamada, “Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe3O4 and -Fe2O3 for Rechargeable Batteries,” J. Electrochem. Soc., 2010, 157,pp. A60-A65. |
[18] | P. Dordor, J. P. Chaminade, A. Wichainchai, E. Marquestaut, J.P. Doumerc, M. Pouchard, and P. Hagenmuller, “Crystal growth and electrical properties of CuFeO2 single crystals,” J. Solid State Chem., 1988, 75, pp.105-112. |
[19] | L. Lu, J.-Z. Wang, X.-B. Zhu, X.-W. Gao, and H.-K. Liu, “High capacity and high rate capability of nanostructured CuFeO2 anode materials for lithium-ion batteries,” J. Power Sources, 2011, 196, pp.7025-7029. |
[20] | A. M. Sukeshini, H. Kobayashi, M. Tabuchi, and H. Kageyama, “Physicochemical characterization of CuFeO2 and lithium intercalation,” Solid State Ionics, 2000, 128, pp.33-41. |
[21] | C. D. Wagner, C. J. Powell, J. W. Allison, and J. R. Rumble, “NIST X-ray Photoelectron Spectroscopy Database Version 2.0,” National Institute of Standards and Technology, 1997. |
APA Style
Yuhki Yui, Yoko Ono, Masahiko Hayashi, Jiro Nakamura. (2015). Synthesis and Electrochemical Properties of CuFeO2 as Negative Electrodes for Sodium-Ion Batteries. American Journal of Physical Chemistry, 4(2), 16-20. https://doi.org/10.11648/j.ajpc.20150402.11
ACS Style
Yuhki Yui; Yoko Ono; Masahiko Hayashi; Jiro Nakamura. Synthesis and Electrochemical Properties of CuFeO2 as Negative Electrodes for Sodium-Ion Batteries. Am. J. Phys. Chem. 2015, 4(2), 16-20. doi: 10.11648/j.ajpc.20150402.11
AMA Style
Yuhki Yui, Yoko Ono, Masahiko Hayashi, Jiro Nakamura. Synthesis and Electrochemical Properties of CuFeO2 as Negative Electrodes for Sodium-Ion Batteries. Am J Phys Chem. 2015;4(2):16-20. doi: 10.11648/j.ajpc.20150402.11
@article{10.11648/j.ajpc.20150402.11, author = {Yuhki Yui and Yoko Ono and Masahiko Hayashi and Jiro Nakamura}, title = {Synthesis and Electrochemical Properties of CuFeO2 as Negative Electrodes for Sodium-Ion Batteries}, journal = {American Journal of Physical Chemistry}, volume = {4}, number = {2}, pages = {16-20}, doi = {10.11648/j.ajpc.20150402.11}, url = {https://doi.org/10.11648/j.ajpc.20150402.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpc.20150402.11}, abstract = {This paper investigates the electrochemical properties of CuFeO2 prepared by using a malate precursor method as negative electrodes for sodium-ion batteries. In the voltage range of 0.01 to 3.0 V, the oxide calcined at 750C shows a poor cycle property of 27 mAh/g at 10 cycles, although it exhibits the large first discharge capacity of 579 mAh/g. The cycle property is improved to up to 122 mAh/g at 10 cycles by employing a cycle condition with the voltage range of 0.01 to 1.5 V. The results suggest that the sodium-ion insertion/extraction mechanism in CuFeO2 would involve valence changes of Fe ions in the oxide from the Fe3+ state to Fe0 state in the discharge process and from Fe0 to Fe3+ in the charge process.}, year = {2015} }
TY - JOUR T1 - Synthesis and Electrochemical Properties of CuFeO2 as Negative Electrodes for Sodium-Ion Batteries AU - Yuhki Yui AU - Yoko Ono AU - Masahiko Hayashi AU - Jiro Nakamura Y1 - 2015/04/14 PY - 2015 N1 - https://doi.org/10.11648/j.ajpc.20150402.11 DO - 10.11648/j.ajpc.20150402.11 T2 - American Journal of Physical Chemistry JF - American Journal of Physical Chemistry JO - American Journal of Physical Chemistry SP - 16 EP - 20 PB - Science Publishing Group SN - 2327-2449 UR - https://doi.org/10.11648/j.ajpc.20150402.11 AB - This paper investigates the electrochemical properties of CuFeO2 prepared by using a malate precursor method as negative electrodes for sodium-ion batteries. In the voltage range of 0.01 to 3.0 V, the oxide calcined at 750C shows a poor cycle property of 27 mAh/g at 10 cycles, although it exhibits the large first discharge capacity of 579 mAh/g. The cycle property is improved to up to 122 mAh/g at 10 cycles by employing a cycle condition with the voltage range of 0.01 to 1.5 V. The results suggest that the sodium-ion insertion/extraction mechanism in CuFeO2 would involve valence changes of Fe ions in the oxide from the Fe3+ state to Fe0 state in the discharge process and from Fe0 to Fe3+ in the charge process. VL - 4 IS - 2 ER -