The age and growth of the Olive tail Rogadius asper exploited by the demersal trawl fishery in the Gulf of Suez were investigated during the fishing season 2014/2015. Ageing was done by sagittal otoliths for a sample of 675 ranged from 9.2 to 25.9 cm in total length (TL) with mean of 17.4±2.95 cm. The sex ratio was skewed in favors of females (1.6:1), which tended to high in number and bigger in size than males. The maximum investigated age of females was 4 years and that of males was 3 years. The mean von Bertalanffy growth parameters for both sexes L∞= 26.43±0.22cm and K=0.47±0.03year-1 as estimated by four different methods. According to gender the growth was variable and significantly differed (P˂0.05=0.002). Females attained a greater mean L∞= 27.2±0.44cm than males L∞=24.0±0.26 cm and males displayed greater mean k value 0.53±0.02 year-1 than that of females K=0.43±0.01 year-1. Fish of age groups 1 and 2 years were dominated the age compositions of R. asper constituting 36.6% and 39.3 % respectively. The estimated value of total mortality, natural mortality and fishing mortality for the pooled data was: Z= 1.51±0.25, 0.58±0.09 and 0.93±0.08 year-1 respectively. It was indicated that the fishing mortality was more than one third (37.6%) of the derived natural mortality and exploitation rate was 0.62, indicating that the species was heavily exploited. Although R. asper is not a target species of commercial fisheries, it suffers high exploitation as part of the by-catch for its suitable market price for insufficient income.
Published in |
American Journal of Life Sciences (Volume 3, Issue 6-1)
This article belongs to the Special Issue New Horizons in Basic and Applied Zoological Research |
DOI | 10.11648/j.ajls.s.2015030601.11 |
Page(s) | 1-6 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Gulf of Suez, Red Sea, Rogadius asper, Age & Growth, Demographic Structure
[1] | J.S. Nelson, “ Fishes of The World.” 4th edition. John Wiley and Sons, Inc, New York, (2006), 601pp. |
[2] | A. Shinomiya, M. Yamada, and T. Sunobe, “Mating system and protandrous sex change in the lizard flathead, Inegocia japonica (Platycephalidae)”, (2003). Ichth. Research 50: 383-386. |
[3] | L. W. Knapp, “Platycephalidae. In W. Fischer and G. Bianchi (eds.) FAO species identification sheets for fishery purposes. Western Indian Ocean (Fishing Area 51). (1984), Vol. 3. FAO, Rome. pag. var. |
[4] | K. Riede, “Global register of migratory species - from global to regional scales” Final Report of the R&D - Project 808 05 081. Federal Agency for Nature Conservation, Bonn, Germany. (2004), 329 p. |
[5] | G.R. Allen and R. Swainston, “The marine fishes of north-western Australia: a field guide for anglers and divers”. Western Australian Museum, Perth. (1988), 201 p. |
[6] | C.M. Breder and D.E. Rosen, “Modes of reproduction in fishes”. T.F.H. Publications, Neptune City, New Jersey. (1966), 941 p. |
[7] | R., Froese, J. Thorson and R.B. Reyes Jr., “A Bayesian approach for estimating length-weight relationships in fishes”. J. Appl. Ichth. (2013):1-7. |
[8] | H. M. Sabet, A. Heidari and H. Fekrandish,” Population structure, length-weight and length-length relationships of six populations of the Bartail Flathead Platycephalus indicus (Scorpaeniformes: Platycephalidae) along the Persian Gulf coastal waters”. Journal of Threatened Taxa, January 2015 | 7(1): 6810–6814. |
[9] | S. A. Hashemi, S. A. Taghavimotlagh, A. Vahabnezhad, “Stock Assessment of Bartail flathead (Platycephalus indicus Linnaeus, 1758) in northwest of Persian Gulf”. Iran. J. Fisheries Sciences, (2014), 8(2): 153-160. |
[10] | C. A. Gray, V. J. Gale, S. L. Stringfellow and L. P. Raines,”Variations in sex, length and age compositions of commercial catches of Platycephalus fuscus (Pisces: Platycephalidae) in New South Wales, Australia” Marine and Freshwater Research, 2002, 53, 1091–1100. |
[11] | C. A. Gray and L. M. Barnes, “Spawning, maturity, growth and movement of Platycephalus fuscus (Cuvier, 1829) (Platycephalidae): fishery management considerations” J. Appl. Ichth. (2015), 1–9. 2002. |
[12] | G. A. Hyndes, N. R. Loneragan and I. C. Potter, “Influence of sectioning otoliths on marginal increment trends and age and growth estimates for the flathead Platycephalus speculator. Fishery Bulletin, (1992), 90 (2). |
[13] | M. J. Holden and D. F. S. Raitt, “Manual of Fisheries Science Part 2-Methods of Resource Investigation and their Application”, FAO, Rome, (1974), 214 p. |
[14] | J. Schnute and D. Fournier, “A new approach to length-frequency analysis: growth structure”. Can. J. Fish. Aqua. (1980), Sci. 37:1337–1351. |
[15] | D. A. Fournier, J. R. Sibert, J. Majkowski, and J. Hampton. “MULTIFAN a likelihood-based method for estimating growth-parameters and age composition from multiple length frequency data sets illustrated using data for southern blue fin tuna (Thunnus maccoyii)”. Can. J. Fish. Aqua. Sci. (1990), 47:301–317. |
[16] | P. Sparre and S. C. Venema, “Introduction to tropical fish stock assessment” Part 1. Manual. FAO Fisheries Technical Paper Nº 306.1. Rev. 2. Rome, FAO, (1998), 407 p. http://www.fao.org/docrep/W5449E/w5449e00.htm.) |
[17] | L. von. Bertalanffy “A quantitative theory of organic growth (Inquiries on growth laws. 2)” Hum. Biol., (1938) 10:181-213. |
[18] | M. H. Prager, S. B. Saila and C. W. Recksiek “FISHPARM: A Microcomputer Program for Parameter Estimation of Nonlinear Models in Fishery Science”. Old Dominion Univ. Ocean. Tech., Rep. (1989), 87–10. |
[19] | J. A. Wetherall, J. Polovina and S. Ralston” Estimating growth and mortality in steady-state fish stock from length-frequency data. In: D. Pauly and G.R. Morgan (Eds.), Length-based Methods” in Fishery Research, (1987), 53-74. |
[20] | F.C. Jr. Gayanilo and D. Pauly, “FAO–ICLARM stock assessment tools. Reference Manual” FAO, Rome. (1997), 262 pp. |
[21] | J.G. Shepherd “A weakly parametric method for estimating growth parameters from length composition data. In: Pauly, D. and Morgan, G. R. (Eds.), Length-based methods" in fisheries research. ICLARM Conf. Proc., (1987), 13: 113-119. |
[22] | D. Pauly, “Theory and management of tropical multispecies stocks: A review, with emphasis on the Southeast Asian demersal fisheries”. ICLARM Studies and Reviews No. 1, 35 p. International Center for Living Aquatic Resources Management, Manila, (1979). |
[23] | D. Pauly and J. L. Munro “Once more on the comparison of growth in fish and invertebrates”. Fishbyte, (1984), 2(1): 21. |
[24] | W. E. Ricker, “Computation and interpretation of biological statistics of fish populations”. Bull Fish Res Bd Can, (1975), 191:382.4 |
[25] | C. C. Taylor, “Temperature, growth and mortality: the Pacific cockle”. Journal du Conseil, (1960), 26(1): 177-224. |
[26] | D. H. Cushing “Fisheries biology, a study in population dynamics”. University of Wisconsin Press (Madison WN), (1968), 200 p |
[27] | A. L. Jensen “Beverton and Holt life history invariants result from optimal tradeoff of reproduction and survival”. Can. J. Fish. Aquat. Sci. (1996), 53, 820–822. |
[28] | D. A. Hewitt and J. M. Hoenig. “Comparison of two approaches for estimating natural mortality based on longevity. U.S. National Marine Fisheries Service Fishery Bulletin, (2005), 103:433–437. |
[29] | R. J. Beverton and S. J. Holt. “On the Dynamics of Exploited Fish Populations”. Chapman & Hall, New York, (1957). |
[30] | R. Froese and C. Binohlan. “Empirical relationships to estimate asymptotic length, length at first maturity, and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data”. Journal of Fish Biology, (2000), 56:758–773. |
[31] | G. V. Nikolsky. “The ecology of fishes”. 6. ed. London, Academic Press, (1963), 353p. |
[32] | S. Smith “Life history of lake herring of Green Bay, Lake Michigan”. Fish. Bull. No. 109, Vol. 57, U. S. Fish. & Wildl. Serv., (1956), 138p. |
[33] | C. Binohlan, R. Froese and D. Pauly ”The length–length table. In: Froese, R.; Pauly, D. (eds). Fishbase 1998: concepts, design and data sources. ICLARM, Manila, (1998), pp. 124. |
[34] | M. H. Sabet, S. Khataminejad and S. Vatandoust “Length weight and length-length relations of the seven endemic Alburnus species (Actinopterygii: Cypriniformes: Cyprinidae) in Iran”. Acta Ichthyologica Et Piscatoria, (2014), 44(2): 157–158. |
[35] | W. F. Tesch, “Age and growth. In: Methods for assessment of fish production in fresh waters”. W. E. Ricker (Ed). Blackwell Scientific Publications, Oxford, (1971), pp. 98–130. |
[36] | C. A. Gray and L. M. Barnes “Spawning, maturity, growth and movement of Platycephalus fuscus (Cuvier, 1829) (Platycephalidae): fishery management considerations. J. Appl. Ichth. (2015), 1–9. |
[37] | B. Hayes. “A statistical method for evaluating differences between age-length keys with application to Georges Bank haddock, Melanogrammus aeglefinus”. Fish. Bull.(1993), 91:550–557 |
[38] | J. A. Musick. “Criteria to define extinction risk in marine fishes”. Fisheries, (1999), 24(12): 6-14. |
[39] | J. A. Gulland “The fish resources of the ocean. West by fleet survey. Fishing News books Ltd., for FAO: 255 p. revised edition of FAO Fish. Tech. pap. (1971), (97):425p. |
[40] | J. A. Gulland. “Report of FAO/IOP workshop on the fishery resources of the western Indian Ocean South of the Equator”. Rome, FAO, IOFC/DEV/1979/45: 1-37. |
APA Style
Manal Sabrah, Amal Amin, Aly El Sayed. (2015). Age, Growth and Demographic Structures of Thorny Flathead Rogadius asper, Cuvier, 1829 (Pieces: Platycephalidae) from the Coastal Waters of the Suez Gulf. American Journal of Life Sciences, 3(6-1), 1-6. https://doi.org/10.11648/j.ajls.s.2015030601.11
ACS Style
Manal Sabrah; Amal Amin; Aly El Sayed. Age, Growth and Demographic Structures of Thorny Flathead Rogadius asper, Cuvier, 1829 (Pieces: Platycephalidae) from the Coastal Waters of the Suez Gulf. Am. J. Life Sci. 2015, 3(6-1), 1-6. doi: 10.11648/j.ajls.s.2015030601.11
AMA Style
Manal Sabrah, Amal Amin, Aly El Sayed. Age, Growth and Demographic Structures of Thorny Flathead Rogadius asper, Cuvier, 1829 (Pieces: Platycephalidae) from the Coastal Waters of the Suez Gulf. Am J Life Sci. 2015;3(6-1):1-6. doi: 10.11648/j.ajls.s.2015030601.11
@article{10.11648/j.ajls.s.2015030601.11, author = {Manal Sabrah and Amal Amin and Aly El Sayed}, title = {Age, Growth and Demographic Structures of Thorny Flathead Rogadius asper, Cuvier, 1829 (Pieces: Platycephalidae) from the Coastal Waters of the Suez Gulf}, journal = {American Journal of Life Sciences}, volume = {3}, number = {6-1}, pages = {1-6}, doi = {10.11648/j.ajls.s.2015030601.11}, url = {https://doi.org/10.11648/j.ajls.s.2015030601.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajls.s.2015030601.11}, abstract = {The age and growth of the Olive tail Rogadius asper exploited by the demersal trawl fishery in the Gulf of Suez were investigated during the fishing season 2014/2015. Ageing was done by sagittal otoliths for a sample of 675 ranged from 9.2 to 25.9 cm in total length (TL) with mean of 17.4±2.95 cm. The sex ratio was skewed in favors of females (1.6:1), which tended to high in number and bigger in size than males. The maximum investigated age of females was 4 years and that of males was 3 years. The mean von Bertalanffy growth parameters for both sexes L∞= 26.43±0.22cm and K=0.47±0.03year-1 as estimated by four different methods. According to gender the growth was variable and significantly differed (P˂0.05=0.002). Females attained a greater mean L∞= 27.2±0.44cm than males L∞=24.0±0.26 cm and males displayed greater mean k value 0.53±0.02 year-1 than that of females K=0.43±0.01 year-1. Fish of age groups 1 and 2 years were dominated the age compositions of R. asper constituting 36.6% and 39.3 % respectively. The estimated value of total mortality, natural mortality and fishing mortality for the pooled data was: Z= 1.51±0.25, 0.58±0.09 and 0.93±0.08 year-1 respectively. It was indicated that the fishing mortality was more than one third (37.6%) of the derived natural mortality and exploitation rate was 0.62, indicating that the species was heavily exploited. Although R. asper is not a target species of commercial fisheries, it suffers high exploitation as part of the by-catch for its suitable market price for insufficient income.}, year = {2015} }
TY - JOUR T1 - Age, Growth and Demographic Structures of Thorny Flathead Rogadius asper, Cuvier, 1829 (Pieces: Platycephalidae) from the Coastal Waters of the Suez Gulf AU - Manal Sabrah AU - Amal Amin AU - Aly El Sayed Y1 - 2015/09/02 PY - 2015 N1 - https://doi.org/10.11648/j.ajls.s.2015030601.11 DO - 10.11648/j.ajls.s.2015030601.11 T2 - American Journal of Life Sciences JF - American Journal of Life Sciences JO - American Journal of Life Sciences SP - 1 EP - 6 PB - Science Publishing Group SN - 2328-5737 UR - https://doi.org/10.11648/j.ajls.s.2015030601.11 AB - The age and growth of the Olive tail Rogadius asper exploited by the demersal trawl fishery in the Gulf of Suez were investigated during the fishing season 2014/2015. Ageing was done by sagittal otoliths for a sample of 675 ranged from 9.2 to 25.9 cm in total length (TL) with mean of 17.4±2.95 cm. The sex ratio was skewed in favors of females (1.6:1), which tended to high in number and bigger in size than males. The maximum investigated age of females was 4 years and that of males was 3 years. The mean von Bertalanffy growth parameters for both sexes L∞= 26.43±0.22cm and K=0.47±0.03year-1 as estimated by four different methods. According to gender the growth was variable and significantly differed (P˂0.05=0.002). Females attained a greater mean L∞= 27.2±0.44cm than males L∞=24.0±0.26 cm and males displayed greater mean k value 0.53±0.02 year-1 than that of females K=0.43±0.01 year-1. Fish of age groups 1 and 2 years were dominated the age compositions of R. asper constituting 36.6% and 39.3 % respectively. The estimated value of total mortality, natural mortality and fishing mortality for the pooled data was: Z= 1.51±0.25, 0.58±0.09 and 0.93±0.08 year-1 respectively. It was indicated that the fishing mortality was more than one third (37.6%) of the derived natural mortality and exploitation rate was 0.62, indicating that the species was heavily exploited. Although R. asper is not a target species of commercial fisheries, it suffers high exploitation as part of the by-catch for its suitable market price for insufficient income. VL - 3 IS - 6-1 ER -